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ESTIMATION IN PARAMETRIC MIXTURE FAMILIES

by

Alan E. Gelfand

1. Introduction

For mixture distributions of the form

e(z) - Jf(zln)dFe(n) * (1)

we consider estimation of g(e) under squared error loss.

Conditions for the identifiability of fe(z) in Fe(n) with

respect to f(zln) are discussed in Teicher (1961).

We look at three different problems:

(i) In Section 2 we investigate the possibility

of uniformly improving upon an unbiased estimator of g(e);

(ii) In Section 3 we offer characterizations of Bayes

rules for g(e) as well as a simple complete class theorem;

(iii) In Section 4 we investigate the performance of

empirical Bayes rules generated through the E. algorithm.

Results will generally be given for z, n, e univariate although

multidimensional extensions are available in some cases.

Our primary illustrative examples will be in the context

of the noncentral chi-square distribution where f(zlr) is
2

Xp+2 n and FeC(n) is Poisson with intensity parameter e. Motiva-

tion is provided by recognizing that Z is inadmissible for

-lI
estimating g(e) = E6 (Z) and that Z is inadmissible for

IR A .
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estimating g(O) - Ee(Z 1 ). For the former 6(Z) a max(Z,p)

clearly dominates Z. For the latter 6(Z) a min(Z "1 (p-21)

clearly dominates Z 1.

2. Improving Upon Unbiased Estimators

Let T(Z) be an unbiased estimator of g(e) and let

a(n) - E(T(Z)ln). The "associated conditional problem" is to

estimate a(h) under squared error loss within the family

f(zln). We have the following result.

Theorem 1: T(Z) + c *(Z), c > 0, dominates T(Z) under

squared error loss if

cove(a(n), E(ln)) < 0 v e (2)

B*Ysup cny(Tijn) < - c/2 (3)
n E(421n) -

Proof. By direct calculation we may show that the difference

in risk between T and T + c* is

-El - 2c cov,(a(n), *(Z))

where

I (n) C2E( 21n) + 2c E[(T-a)Ir]•

But (2) is equivalent to cov8 (a(n), *(Z)) < 0 while (3) implies

I (n) < 0 Vn whence T + cf dominates T.

Remark 1: To hope to satisfy condition (3), we require

cov(T,In) < 0 whence it is convenient to choose * inversely

related to T. In many well-known examples, such a choice of 0

leads to a dominating estimator, e.g., if g(e) > 0, T+ dominates

T and = - T is decreasing in T.

a IV1R%'
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Remark 2: * decreasing in T does not necessarily imply
condition (2) is met. However, if TIn is a natural exponential

family (Morris, 1982), i.e., f(tli) - etn-P(), then a(n) - E(TIn)

p'(n) increases in n while for E(#In), dE(#tn) a cov(T,#In) < 0drn

implies E(*fn) decreases in n so that (2) holds.

Remark 3: If T(Z) is admissible for a(n) in the conditional

problem, it may or may not be admissible for g(e). For example,

Zin ' N(n,1) and ile n. N(0,1), then Z is admissible for both
= .I Ii~ le-Zn-  -1e-ne-1

a(n) n and g(O) e . If Zjn P n- and nie -. e , Z/2

Is admissible for a(n) a n but cZ, 0 < c < 1/2 dominates Z/2 for

g(e) = e.

Remark 4: If T, unbiased for a(n), is dominated by S in

the conditional problem, it is possible that T dominates S In

the unconditional problem. In particular, if we take a S - T,

c a 1, we must have (3) hold, i.e., cov(T,fIn) < 0, Vn while

the left-hand side of (2) is sufficiently positive ve. Exarples

can readily be constructed using 3 point distributions for ZIn.

Remark 5: In the preceding remark, S will dominate T in

the unconditional problem if Tin is a natural exponential family

using Remark 2.

Suppose instead Fe(n) is a natural exponential family in n

dominated by u with density f(nle) = eTne x(e) and without loss

of generality suppose a(n) = n. In this setting, Karlin (1958)

supplies conditions such that cn is admissible for X'(e) under

squared error loss. These conditions require c > 0 and

.. I'
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J e C dO of e J e dO (4)

where (0,j) is the natural parameter space for f(n6) and e. is

an arbitrary interior point.

Suppose cn is admissible for X'(e). Is cT admissible for

x'(8)? Remark 3 shows that this is not necessarily the case.

We can show that, if Karlin's conditions hold for c

Theorem 2: If

Ee var(Sln) > c2Ee var(Tlnl ve (5)

then S cannot dominate cT in estimating X'(O).

Proof. The proof essentially imitates Karlin's argunent.

Suppose S dominates cT. Let bs(6) = E8 (S) - cE,(T) r Es(S)
I

cX'(e) whence bs(0) - cove(nE(Sln)) - cx"(e). Therefore

(bS(e) + cX"(0)) 2 < x"(e) vareE(Sin)

or
(bS(e) + c"e)

S+CX()) '+ Ee var(SIn) < var (S)
x"(6)e

and finally

(b 5(e) + cx"(e))2
Ee(S-x,(e)) 2>(e) + Ee var(Sln)

2+ (bs(e) + (c-l)X'(8))

By our supposition the left-hand side of this inequality is

at most
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E (cT-x'(e)) a c2 vare(T) + [(cl)x,(e))

2 2a c Eevar(Tln ) + C2 (c-)x,(e)

Using (5) we obtain

(bS(0) + cx"(e))
2

S + (bS(e) +(c-l)xI(e))

_< c2X"(e) + [(c-1)x'(6)] 2 Ye

Expression (6) is equivalent to Karlin, p. 413, expression (7).

The conditions (4) then imply b (e) - 0 and S a cT. I
S

Remark 6: This result shows that c'T + b can't dominate

cT if c' > c.

Remark 7: If T is MVUE for n, it is MMJE for x'().

Noncentral distributions offer a convenient family of

mixtures to study in terms of applying Theorem 1. Gelfand (19?1)

provides many examples. For the noncentral chi-squared

distribution, it is shown that # of the form ZO or of the form

e 8Z can be used to dominate Z in estimating E(Z) and Z- in

estimating Es(Z- ). Thus (Z-p)/2, the MVUE of e, can be dominated

by estimators of the form (Z-p)/2 + cZe and of the form

(Z-p)/2 + ce for appropriate c and B. This generalizes

earlier results of Perlman and Rasmussen (1975) and of Neff and

Strawderman (197f). Of course (Z-p)+/2 dominates the MVUE as

well and has been supported by Chow and Hwang (19S3) who argue

that it is a simple estimator which"cannot be improved upon

uniformly and significantly" and by Saxena and Alam (a192) who
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show that it dominates the MLE for 0. We will return to this

estimator in Section 4.

This section provides a method for uniformly improving

upon unbiased estimators in a mixture distribution framework. A

Dominating biased estimators is a more difficult problem.

3. Bayes Estimation

Suppose we let TY () be a family of prior distributions

for e c 0. Under squared error loss the generalized Bayes

estimator for g(6) is

6Y(z) = (fy (z))d1 Y(e) (7)

where f(z) = ffe(z)dT y (6) is the marginal distribution of Z.

If the support of T is e and if E 2e) < -, then the

Bayes risk of 6 is finite and 6 is admissible.YY

Let F (r) in (1) be dominated by V with RN derivative

f(nje). Then

6 (z) fg(6)f~zj1n3f(n le)dV(n)di (6)
6 (z) = C)

fff(zjrn)f(ne)du(n)dT Y(e)

Sfby (n)f(zln)dw Y(n)

ff(z lnldz (n)

where r Y(n) is the prior distribution induced on n by Ty, i.e.,

dir y(n) = h y(n)d(n) and h C) = Jf.(n6e)d Y(e), with

b C = h-1(n)Jg(e)f(nje)di (e) , (9)
Y Y Y

i.e., b (n) - E (g(e)n).~Y
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Expressi-,n (8) shows that

6 (Z) a E(g(O)IZ) a E(b Y(n)IZ) , (10)

i.e., we can calculate the Generalized Bayes rule through the

conditional problem. If we let c (n) E Y(g2 ()In), then

6Y(Z) has finite Bayes risk if Ec (n) < -.

Let F(nre) be a natural exponential family as in the

previous section. If g(e) = er, then b (n) = h-1 ()drh Y(n)

if g(e) = ere, b (n) - h-l(n)h (n+r). 
dn r

Y Y Y
Gelfand (1983) again offers examples using noncentral

distributions. For Z distributed noncentral chi-squared as in

the introduction,

h (n) = e dT (e)
n:' Y

and

Zb (n)(Z/2) n h (n)[r(p/2 + n)] - l

6 (Z) = n Y  - Y (11)
E(,'(/2) n h Y(n)[r(p/2 + n)] - l

n

If g(e) j e , b(n) - (n+r) h-l(n)h (n+r). ((x) denotes
y r y Y Y

the falling factorial of y terms starting at x.) At, for example,

r = 1 (11) becomes

dJ2(Z) dJ (Z)
6-(Z) = 2Z (2 1

dZ dZ

where J (Z) is the denominator of (11). Expression (12)Y

characterizes all generalized Bayes estimates of 6. Gelfand

notes that setting 6 y(Z) = (Z-p)/2, the MVJF o. E, in (12),

yields a second order homogeneous linear differential equation

~ ~ ... ~ ~ . .......



8

which is not solvable, I.e., the inadmissible MVUE can't be

generalized Bayes.

A convenient family for T (e) are the distributionsY

Gamma (p/2 + v,y), v > -(p-2)/2 (i.e., E(e) - -f-l(p/2 + v))

whic4 for g(e) - eleads to

1 dJ (Z) -
6 (Z) = + (p/2 + v + Z dJ J -(z)) • (13)
Y'v dZ M

At v = 0 we obtain the closed form 6 Y,0 (Z) = (Y+l)- ((Y+l)-I Z+p)/2

including the generalized Bayes solution, 110,0(Z) = (Z+p)/2.

These estimators are discussed in Perlman and Rasmussen (1975)

and in Saxena and Alam (1982) who note that 6 0 ,0 (Z) is dominated

by the MVUE. It is straightforward to show that 6 (Z)

increases in v.

Returning to the rules in (7), we ask if they form a complete

class. The conditional problem is not useful here because in the

representation of 6 in (s), b depends upon the particular

prior, T We attack the problem directly utilizing results of

Sacks (1963). His Remark 3, p. 766, argues that with g(e) = e

the class (7) will be complete under squared error loss if f (z)

is continuous in both 6 and z and, assuming - < e < w, for

each c > 0

e 2 f0 ( z+£ ) 2 f ( z-C)
sup e < , sup - < OD

e < o fe(z) e > 0 fe(z)

e2f e(z-E)  e2-fe(z-+c)
lira SUP = lim sup -0.

d e > d fe(z) d e < - d fe(z)
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Condition (14) will be satified if f 0 (z+c)frl(z) _ o ( - 2 ) Vz

and c,- - E < . As noted by Sacks, parts of (14) are not

needed if e belongs to a subset of R1. We have the following

result.

Theorem 3: If F(e(n), - i <, is a natural exponential

family dominated by p, a translation invariart measure, and if

f(zln) - f(z-n), i.e., a translation family, then (7) with

g(e) - e is a complete class for estimating e under squared

error loss.

Proof. By assumptions

62 fe(z+c) e2ff(z + - n)ene di.(n) e2 ec

fe(z) ff(z - O)eyle dp(n)

from which the conditions in (14) are immediately satisfied.

4. Parametric Empirical Bayes Estimation

In the parametric empirical Bayes approach, y in (7) is assumed unknown

and is estimated from the data using the marginal distribution

of Z If y estimates y the resultant empirical Bayes estimator

is 6-(z). The maximum likelihood estimator (MLE) is a frequentlyYA

employed choice of y. In our setting this requires a very

unappealing numerical maximization of a double integral. This

would typically be accomplished by algorithms of a Newton or

quasi-Newton type. Such algorithms do not guarantee to increase

the likelihood at successive iterations. The EMY algorithm as

described in De.pster et al. (1977) offers an attractive a2ternatfve.
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To fix notation, let T be dominated by w with RN

derivative t (e). At stage k the algorithm calculates anY

expectation Q(Ysyk) a Eyk log(fy (Z,e)Iz) and then maximizes

Q(Y,yk) over all y. In our case, this simplifies to

max ff Y(ejz).log t ()dw(e)
y k

This new y is denoted by Yk~l and the algorithm is repeated

until stability is achieved. Such a procedure by its

definition may be shown to increase the likelihood with

successive iteration (see Dempster et al.,'1977). Wu (1983)

shows that under minimal assumptions such a procedure yields

a stationary value for f y(z). He recommends several EM

iterations be tried with different starting y representative

of the parameter space to try to identify local and hopefully

a global maximum. Redner and Walker (198L) extensively discuss

the use of the EM algorithm for maximum likelihood estimation

in mixture distributions. Their focus, however, is on the MLE

for e in fe(z) as in (1) with fe(z) being a finite mixture density and

e a vector including parameters of the distributions being mixed.

If ty is an exponential family, i.e., t. = c(y)e Y( ) , the algorithm

simplifies to maximizing log c(y) + Yqk where qk= E Yk(q(e)Iz). Then yk+l

is a solution to -c'(y)c-1(Y) = qk" In fact, qk+l = Y(qk )(q(e)Iz) which

reduces the algorithm to a stationary or fixed point problem. The conditional

representation of E (q(6)lz) as E (b (W)jz) noted in (8) is useful here in
Y Y Y



reducing the computation needed for the repeated calculation

of the expectation required by the algorithm.

As an example we return to the noncentral chi-squared case

under the assumption leading to (13) to obtain the empirical Bayes

estimate 6- (CZ). It is clear that direct calculation of the MLE, Y9 , is

difficult. However, since q(6) = -e', expression (13) up to a sign change

sets, q for a given y k* But since E C~e) = Y (p/2+ v) , we have

Yk+l Hy(q k) = Ok 1(p/2+ v).

Writing this explicitly as a fixed point problem, we have

I ( zen
_____12_+__ + n 2 (e + P12 + v *T t r (15)

6+p/2 + v ze _)T). £ I1 i2(e + p12+v

where I ~ r(p/2 + n + v) [r(p/2 + n)-nZ) Let the right-

hand side of' (114) be denoted by W V(e;z). We may show that

Ci) W V CO;z) = 0, i.e., for any z, 0 is a fixed point;

(1i) W V (e;z) increases in e for fixed z;

iii) w (e;z) is bounded for fixed z;

(iv) For e small W~ Ce;z) - e regardless of z;

(v) W V(e;z) has at most one positive fixed point for a

fixed z.

Hence, given v and z, a plot of W V(e;z) vs. e assum-es one

of the two formis in Figure 1.



FIGURE 1a

Wv (e;z)

FIGUEE 1(b)
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With Increasing z the plot will change from Figurel(a) to

Figurel(b). As a result, if we employ the EM algorithm, we

will find that for any starting 0 under Figure (a) and for

starting 8 sufficiently small under (b), 0k - 0 i.e., k .

Moreover, because of (iv), the convergence will be extremely

slow (e.g., 3,000 iterations may yield ek of the order of 10-2)"

It is noteworthy that when 0k - 0, i.e., e = 0 (Y =) we, in

fact, minimize f (z), i.e., the EM algorithm will fail toY

maximize the likelihood. But in terms of empirical Bayes

estimation, from (13), 6 ,V(z) - 0 is a reasonable guess for e

if z is sufficiently small. If there is a fixed point 6 > 0,

the corresponding y must be the MLE. In implementing the EM

algorithm, we should begin with y small, i.e., 8 large to insure

finding this fixed point if it exists. Moreover, if after, say

300 iterations 6300 is small (say 10- 2 ) and decreasing, we will

conclude that ek * 0. (It is possible that the nonzero fixed

point lies below e300 , but practically this is of little concern.)

The maddeningly slow convergence of the algorithm even to the

unique MLE may make the following alternative attractive. Using a

rough plot of W (6;z) versus 8 for a few choices of z should

enable, when z is sufficiently large, identification of an

appropriate initial e to insure convergence of Yk to the MLE

or to conclude that z is sufficiently small so that ek - 0.

We note that for any z and any starting y the empirical Bayes

estimator resulting from this algorithm will be > 0 and, in fact,

V
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if v 0 0, the-right-hand side of (13) simplifies and

a- (Z) a (Z-P)+/2 (in fact, y - [p(Z-p)l ), i.e., the

positive part version is empirical Bayes. Perlman and Rasmussen

(1975) observed that the MVUE is itself empirical Bayes if we take

6., (Z) with Y - p(Z-p) -l

An extensive simulation was conducted to study the risk

behavior of the 6- (z). Cases p - 6 with v - -2,-1,0,1,2,5,10

and p - 12 with v a -4,-2,0,2,4,10,20 were examined using 5,000

replications. The algorithm was allowed 300 iterations on each

-4replication. Convergence was declared if Yk+l - Yki < 10.

If for any k, ek < 10 2, e = 0 was taken as the estimate. If

the algorithm failed to converge after 300 iterations, e300 was

taken as the estimate. Starting points of (i) yo - I and (ii)

Y0 - (Z-p)-l(p+2v) if Z > p, y0 = I if Z < p, were tried. The

choice yo - 1 may be viewed as the "center" of the parameter

space in that it corresponds, for the induced negative binomial

prior on nto a success probability of .5. The choice

YO = (Z-P)- (p+2v) arises from the fact that E y(Z) = p y-1 (p+2v).

Both starting values were successful in obtaining the unique

MLE. However, (ii) tended to converge more quickly! Convergence

tended to be slower with increasing v although more frequently

to the unique MLE than to the fixed point at 0, i.e., more

frequently we would be in the case of Figure l(b). Increasing p

from 6 to 12 led to quicker convergence again more frequently

to the VLE.
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Figures 2 and 3 display the results for p * 6 and p * 12,

respectively, In terms of relative mean square error (RMSE),

I.e., the MSE of 6-, relative to p/2 + 2e, that of the MVUE.
'Y tv

In Figure 1, we present 6 values of v surrounding v = 0 which

we recall yields (Z-p)+/2. In Figure 2, we simplify to

v = -2,0,2. It is noteworthy that the v = 1,2 estimates not previously

discussed in the literature dominate the positive part MVUE except for e

small.
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